Clustering methods

Functions for applying the proposed fuzzy clustering methods in geocmeans.

CMeans()

C-means

GCMeans()

Generalized C-means

SFCMeans()

SFCMeans

SGFCMeans()

SGFCMeans

Parameter selections

Functions to help in the selection of clustering parameters.

select_parameters() selectParameters()

Select parameters for a clustering algorithm

select_parameters.mc() selectParameters.mc()

Select parameters for clustering algorithm (multicore)

Clustering stability evaluation

Functions to investigate the stability of clustering results.

boot_group_validation()

Check the robustness of a classification by Bootstrap

boot_group_validation.mc()

Check that the obtained groups are stable by bootstrap (multicore)

Clustering quality evaluation

Functions to evaluate the quality of clustering results.

calcCalinskiHarabasz()

Calinski-Harabasz index

calcDaviesBouldin()

Davies-Bouldin index

calcexplainedInertia()

Explained inertia index

calcFukuyamaSugeno()

Fukuyama and Sugeno index

calcGD43()

Generalized Dunn’s index (43)

calcGD53()

Generalized Dunn’s index (53)

calcNegentropyI()

Negentropy Increment index

calcSilhouetteIdx()

Fuzzy Silhouette index

calcUncertaintyIndex()

Diversity index

calcqualityIndexes()

Quality indexes

Clustering spatial evaluation

Functions to evaluate the spatial dimension of clustering results.

calcELSA()

calculate ELSA statistic for a hard partition

calcFuzzyELSA()

calculate ELSA statistic for a fuzzy partition

calc_moran_raster()

Global Moran I for raster

calc_local_moran_raster()

Local Moran I for raster

spatialDiag()

Spatial diagnostic

spConsistency()

Spatial consistency index

adjustSpatialWeights()

Semantic adjusted spatial weights

Visualization functions

Several functions to visualize clustering results.

mapClusters()

Mapping the clusters

uncertaintyMap()

Uncertainty map

spiderPlots()

Spider chart

barPlots()

Bar plots

violinPlots()

Violin plots

sp_clust_explorer()

Classification result explorer

FCMres S3 methods

Several methods to work with FCMres objects.

is(<FCMres>)

is method for FCMres

plot(<FCMres>)

Plot method for FCMres object

predict(<FCMres>)

Predict method for FCMres object

predict_membership()

Predict matrix membership for new observations

print(<FCMres>)

print method for FCMres

summary(<FCMres>)

Summary method for FCMres

summarizeClusters()

Descriptive statistics by group

Utility functions

Several complementary functions that can be handy.

cat_to_belongings() catToBelongings()

Convert categories to membership matrix

groups_matching()

Match the groups obtained from two classifications

undecidedUnits()

Undecided observations

circular_window()

Circular window

standardizer()

Standardizing helper

Datasets

Available datasets in geocmeans.

LyonIris

social and environmental indicators for the Iris of the metropolitan region of Lyon (France)

load_arcachon()

SpatRaster of the bay of Arcachon